Sabtu, 06 Oktober 2012

Anginkah yang Membelah Laut Merah Buat Nabi Musa A.S?

Washington, AS (ANTARA/Reuters) - Angin dari timur yang berhembus kencang dikabarkan membantu terbelahnya Laut Merah oleh Nabi Musa seperti yang tertulis pada kitab suci agama Samawi, kata para ilmuwan Amerika Serikat, Selasa.

Simulasi komputer memperlihatkan bagaimana angin dapat menghempaskan air laut sehingga mencapai dasar lautan dan membentuk laguna, kata kelompok peneliti di Badan Nasional Penelitian Atmosfir dan Universitas Colorado di Boulder.

"Simulasi tersebut hampir cocok dengan bukti pada rombongan Musa," kata pemimpin  penelitian itu, Carl Drews dari NCAR.

Menurut Carl, berdasarkan ilmu fisika, angin dapat menghempaskan air menjadi sebuah jalur yang  man untuk dilintasi karena sifatnya yang luwes, kemudian kembali mengalir seperti semula.

Menurut tulisan dari kitab suci Islam maupun Kristen, Nabi Musa AS. memimpin umat Yahudi keluar dari Mesir atas kejaran Firaun pada 3.000 tahun yang lalu. Laut Merah saat itu terbelah sementara untuk membantu rombongan Musa melintas dan langsung menutup kembali, menenggelamkan para tentara Firaun.

Drews dan kelompoknya meneliti tentang angin topan yang berasal dari Samudera Pasifik menciptakan badai besar yang dapat menghempaskan air di laut dalam.

Kelompoknya menunjukkan kawasan selatan Laut Mediterania yang diduga menjadi tempat penyeberangan itu, dan memaparkan bentuk tanah yang berbeda karena terbentuk setelahnya serta memicu isu mengenai lautan yang terbelah.

Pemaparan tersebut membutuhkan bentuk tapal kuda Sungai Nil dan laguna dangkal di sepanjang garis pantai. Hal ini memperlihatkan angin berkecepatan sekitar 101 kilometer per jam yang berhembus selama 12 jam, dapat menghempaskan air pada kedalaman sekitar dua meter.

"Laguna itu memiliki panjang sejauh 3-4 kilometer dan lebar sejauh lima kilometer yang terbelah selama empat jam," kata mereka di dalam Jurnal Perpustakaan Umum Ilmu Pengetahuan, PloS ONE.

"Masyarakat telah dibuat kagum atas cerita pembelahan laut itu, membayangkan bahwa  hal itu terjadi secara nyata," kata Drew menambahkan bahwa penelitian ini menjelaskan tentang pembelahan laut tersebut berdasarkan hukum fisika.

Perlu penelitian cermat Seorang Arkeolog bernama Ron Wyatt pada ahir tahun 1988 silam mengklaim bahwa dirinya telah menemukan beberapa bangkai roda kereta tempur kuno didasar laut merah.

Menurutnya, mungkin ini merupakan bangkai kereta tempur Pharaoh yang tenggelam dilautan tsb saat digunakan untuk mengejar Musa bersama para pengikutnya.

Menurut pengakuannya, selain menemukan beberapa bangkai roda kereta tempur berkuda, Wyatt bersama para krunya juga menemukan beberapa tulang manusia dan tulang kuda ditempat yang sama.

Temuan ini tentunya semakin memperkuat dugaan bahwa sisa2 tulang belulang itu merupakan bagian dari kerangka para bala tentara Pharaoh yang tenggelam di laut Merah. Apalagi dari hasil pengujian yang dilakukan di Stockhlom  University terhadap beberapa sisa tulang belulang yang berhasil ditemukan,memang benar adanya bahwa struktur dan kandungan beberapa tulang telah berusia sekitar 3500 tahun silam, dimana menurut sejarah,kejadian pengejaran itu juga terjadi dalam kurun waktu yang sama.

poros roda dari salah satu kereta kuda

Selain itu, ada suatu benda menarik yang juga berhasil ditemukan, yaitu poros roda dari salah satu kereta kuda yang kini keseluruhannya telah tertutup oleh batu karang, sehingga untuk saat ini bentuk aslinya sangat sulit untuk dilihat secara jelas. Mungkin Allah sengaja melindungi benda ini untuk menunjukkan kepada kita semua bahwa mukjizat yang diturunkan kepada Nabi2-Nya merupakan suatu hal yang nyata dan bukan merupakan cerita karangan belaka. Diantara beberapa bangkai kereta tadi, ditemukan pula sebuah roda dengan 4 buah jeruji yang terbuat dari emas. Sepertinya, inilah sisa dari roda kereta kuda yang ditunggangi oleh Pharaoh sang raja.

Sekarang mari kita perhatikan gambar diatas, Pada bagian peta yang dilingkari (lingkaran merah), menurut para ahli kira-kira disitulah lokasi dimana Nabi Musa bersama para kaumnya menyebrangi laut Merah. Lokasi penyeberangan diperkirakan berada di Teluk Aqaba di Nuweiba. Kedalaman maksimum perairan di sekitar lokasi penyeberangan adalah 800 meter di sisi ke arah Mesir dan 900 meter di sisi ke arah Arab. Sementara itu di sisi utara dan selatan lintasan penyeberangan (garis merah) kedalamannya mencapai 1500 meter. Kemiringan laut dari Nuweiba ke arah Teluk Aqaba sekitar 1/14 atau 4 derajat, sementara itu dari Teluk Nuweiba ke arah daratan Arab sekitar 1/10 atau 6 derajat

Diperkirakan jarak antara Nuweiba ke Arab sekitar 1800 meter.Lebar lintasan Laut Merah yang terbelah diperkirakan 900 meter. Dapatkah kita membayangkan berapa gaya yang diperlukan untuk dapat membelah air laut hingga memiliki lebar lintasan 900 meter dengan jarak 1800 meter pada kedalaman perairan yang rata2 mencapai ratusan meter untuk waktu yang cukup lama, mengingat pengikut Nabi Musa yang menurut sejarah berjumlah ribuan?  (menurut tulisan lain diperkirakan jaraknya mencapai 7 km, dengan jumlah pengikut Nabi Musa sekitar 600.000 orang dan waktu yang ditempuh untuk  menyeberang sekitar 4 jam).

Menurut sebuah perhitungan, diperkirakan diperlukan tekanan (gaya per satuan luas) sebesar 2.800.000 Newton/m2 atau setara dengan tekanan yang kita terima Jika menyelam di laut hingga kedalaman 280 meter. Jika kita kaitkan dengan kecepatan angin,menurut beberapa perhitungan, setidaknya diperlukan hembusan angin dengan kecepatan konstan 30 meter/detik (108 km/jam) sepanjang malam untuk dapat membelah dan mempertahankan belahan air laut tersebut dalam jangka waktu 4 jam!!! sungguh luar biasa, Allah Maha Besar.

Kamis, 13 Mei 2010

Sentuhan Teknik Nuklir Dalam Produk Elektronik

              Ada tiga jenis reaktor nuklir dilihat dari tujuan penggunaannya. Pertama adalah reaktor yang digunakan untuk tujuan penelitian yang lazim disebut reaktor penelitian (research reactor). Kedua adalah reaktor yang dirancang untuk menghasilkan listrik yang lazim disebut reaktor daya (power reactor) dan digunakan dalam Pembangkit Listrik Tenaga Nuklir (PLTN). Ketiga adalah reaktor yang dirancang berperan ganda, yaitu sebagai penghasil listrik (berperan sebagai reaktor daya) dan produksi bahan bakar fisi (membiakkan bahan bakar nuklir) yang lazim dikenal sebagai reaktor pembiak (breeder reactor). 
             Reaktor penelitian mempunyai peran yang sangat besar dalam rangka pemanfaatan teknik nuklir di luar energi. Reaktor jenis ini hanya memanfaatkan neutron hasil reaksi fisi nuklir, sedang panas yang keluar dari reaksi nuklir itu akan dibuang. Karena memanfaatkan neutron, reaktor penelitian dirancang mempunyai fluks neutron yang cukup besar sehingga cocok sebagai sarana untuk melakukan irradiasi dengan neutron. Agar fluks neutronnya mencapai optimum, maka pada teras reaktor dikelilingi balok berlillium (Be) dan beberapa baris elemen Be sebagai pemantul neutron. Selain itu, karena panasnya tidak dimanfaatkan, maka reaktor penelitian dirancang berdaya thermal rendah, yaitu berkisar dari beberapa ratus kilo Watt (kW) hingga puluhan Mega Watt (MW). 
              Pemanfaatan teknik nuklir di luar sektor energi dapat dilakukan dengan melibatkan reaktor penelitian maupun tanpa melibatkan reaktor penelitian secara langsung. Pemanfaatan yang melibatkan reaktor penelitian umumnya adalah dengan melakukan irradiasi neutron di dalam teras reaktor. Proses irradiasi neutron ini banyak dimanfaatkan untuk penelitian dalam bidang kedokteran, fisika, kimia, biologi, pertanian, industri, studi lingkungan, metalurgi bahan dan sebagainya. Sedang pemanfaatan teknik nuklir yang tidak melibatkan reaktor penelitian secara langsung biasanya dilakukan dengan memanfaatakan radiasi yang dipancarkan oleh radioisotop. Dengan teknik ini, irradiasi bisa dilakukan di luar teras reaktor. Sedang radioisotopnya sendiri diproduksi dengan teknik irradiasi neutron di dalam teras reaktor. 
             Irradiasi gamma dengan radioisotop banyak dimanfaatkan dalam berbagai bidang. Teknologi irradiasi telah diaplikasikan dalam proses-proses kimia suatu industri. Tanpa disadari sebetulnya banyak produk-produk industri yang dipakai dalam kehidupan sehari-hari mengandung komponen yang proses pembuatannya melibatkan teknologi irradiasi. Barang-barang dari plastik untuk keperluan rumah tangga dapat dibuat melalui proses irradiasi. Produk berupa pesawat televisi maupun mobil misalnya, mengandung komponen-komponen maupun kabel yang pembungkusnya diperkuat oleh proses irradiasi. 

Polimerisasi Radiasi

               Penggunaan teknologi irradiasi yang cukup besar adalah dalam proses kimia suatu industri. Karena membawa energi yang cukup tinggi, radiasi dapat bertindak sebagai katalis untuk merangsang terjadinya perubahan kimia suatuÆÒhan, salah satunya adalah untuk merubah bahan kimia sejenis cairan dari senyawa organik dalam golongan monomer menjadi polimer. Salah satu sifat dari monomer ini adalah apabila menerima paparan radiasi dapat berubah menjadi bahan baru yang disebut polimer, yaitu bahan padat yang sangat keras pada suhu kamar. Teknik pembuatan polimer dengan bantuan radiasi ini disebut polimerisasi radiasi. Dalam bidang industri, teknologi polimerisasi radiasi dapat dipakai untuk memproduksi plastik bermutu tinggi karena sifatnya yang sangat kuat serta tahan terhadap panas.
             Secara umum dapat dikatakan bahwa polimerisasi merupakan usaha untuk memadukan beberapa unsur menjadi satu zat yang berpadu. Pemanfaatan polimer hasil irradiasi dalam industri yang paling banyak adalah untuk pembuatan bahan isolasi kabel listrik. Irradiasi menyebabkan rantai molekul panjang pada polimer bergandengan pada tempat-tempat tertentu yang prosesnya dikenal sebagai pengikatan silang (crosslinking). Energi radiasi dapat merangsang terjadinya ikatan silang antar polimer sehingga terbentuk jaringan tiga dimensi yang dapat mengubah sifat polimer. Peristiwa inilah yang sebenarnya menyebabkan bahan isolasi kabel lebih tahan terhadap panas dan listrik tegangan tinggi. 
             Kabel tidak pernah dapat dipisahkan dari listrik. Hampir pada setiap barang elektronik dapat kita jumpai kabel di dalamnya. Secara umum, kabel yang kita kenal biasanya terdiri atas satu atau lebih logam konduktor yang dibungkus dengan bahan isolator. Kabel jenis ini sering kita temui baik untuk transmisi arus listrik maupun pengiriman pulsa listrik dalam telekomunikasi. Isolasi kabel listrik umumnya dibuat dari bahan plastik polietilen atau polivinil chlorida (PVC). Kedua polimer ini merupakan jenis linier, yaitu polimer yang melunak atau leleh apabila dipanaskan. Kelemahan bahan isolasi ini tentu tidak diinginkan untuk kabel yang digunakan pada alat atau instalasi tertentu. 
              Logam-logam konduktor yang saat ini digunakan untuk kabel transmisi listrik masih memiliki tahanan-dalam, sehingga menyebabkan sebagian arus listrik yang dialirkannya berubah menjadi panas yang dikenal sebagai pemanasan Joule. Semakin tinggi temperatur, semakin tinggi pula tahanan-dalamnya, sehingga semakin banyak energi listrik yang dialirkannya berubah menjadi panas. Karena pemanasan Joule itu pula, maka kuat arus yang mengalir dalam kabel harus dibatasi. Itulah sebabnya, barang-barang elektronik tertentu, komputer misalnya, dilengkapi dengan kipas angin untuk mengeluarkan panas yang terjadi dalam sirkuit-sirkuitnya.
              Plastik PVC yang dibuat dari bahan polimer hasil irradiasi dapat mempertahankan kepadatannya pada temperatur yang jauh lebih tinggi dibandingkan plastik PVC biasa (hasil proses kimia). Dengan teknologi irradiasi ini, bahan isolasi kabel menjadi lebih kuat, lebih elastis, dan lebih tahan terhadap minyak serta larutan kimia lainnya. Kelebihan ini dapat dicapai tanpa menyebabkan perubahan sifat kelistrikan maupun daya isolasinya.
              Teknologi irradiasi juga dapat memodifikasi polietilen menjadi produk polimer yang dapat menyusut volumenya apabila diberi perlakuan panas yang sering disebut sebagai heat shrinkable tube. Produk ini banyak digunakan dalam industri listrik untuk mengisolasi sambungan-sambungan listrik. Heat shrinkable tube juga sering digunakan dalam industri telekomunikasi untuk membungkus satuan-satuan kabel seperti satuan kabel telepon, agar terlindung dari pengaruh luar, lebih awet, aman serta dapat ditanam di bawah tanah. 
              Teknologi irradiasi sangat efisien dan ekonomis untuk pembuatan polimer bahan isolasi kabel berdiameter kecil yang banyak dipakai dalam industri elektronika yang memerlukan akurasi tinggi, seperti komputer dan pesawat telekomunikasi. Untuk beberapa jenis produk barang elektronik, penggunaan kabel bermutu tinggi ini seringkali menjadi syarat mutlak, sehingga produk yang dihasilkannya benar-benar dapat diandalkan dan berdaya saing. 
             Lapisan permukaan sangat tipis (membran) pada baterai perak oksida yang digunakan dalam jam digital maupun kalkulator, demikian juga permukaan floppy disks dan pita rekam video tape, diproses menggunakan teknologi irradiasi. Peneliti dari Jepang telah berhasil membuat membran polimer dari selulosa yang digunakan untuk sistim akustik mikrofon atau pembesar suara. Membran berkualitas tinggi ini sedang dikembangkan nilai komersialnya untuk pembuatan sound systems dan alat musik bermutu tinggi. Dalam bidang energi, polimer elektrolit padat (solid polymer electrolyte) dapat digunakan untuk pembuatan sel fotoelektro kimia. Polimer ini dibuat dari polietilen oksida (PEO) yang dikopel dengan kalium jodida (KJ) dan jodium (J2). Penelitian dalam bidang ini masih terus dikembangkan untuk mendapatkan suatu sistim polimer elektrolit padat yang kelak dapat digunakan sebagai baterai untuk keperluan sistim pembangkit listrik bertenaga matahari (solar energy). 

Pembuatan Bahan Semikonduktor

               Hampir semua alat maupun perkakas sedikit atau banyak bertumpu pada teknologi elektronika. Oleh sebab itu, hampir semua aspek kehidupan manusia dipengaruhi oleh penggunaan bahan semikonduktor dalam produk-produk elektronik. Penggunaan semikonduktor dalam berbagai peralatan elektronik akan meningkat seiring dengan semakin canggihnya produk elektronik. Semikonduktor diperkirakan paling banyak dipakai oleh industri komputer (57 %), peralatan komunikasi (17 %), peralatan elektronik rumah tangga (15 %) dan sisanya sekitar 11 % untuk keperluan lainnya, seperti peralatan militer, otomotif dan mesin industri. Reaktor penelitian seringkali dilengkapi dengan berbagai fasilitas, salah satunya adalah fasilitas doping untuk memproduksi bahan semikonduktor. Pembuatan bahan baru dengan struktur yang berbeda dari bahan aslinya dapat dilakukan dengan teknik irradiasi neutron. Karena penyerapan neutron itu, maka kestabilan inti atom bahan menjadi terganggu dan bahan akan berubah menjadi isotop lain dengan sifat fisika yang berbeda dari unsur aslinya. Teknik ini ternyata dapat dimanfaatkan untuk memproduksi bahan semikonduktor, terutama mengubah karakteristik silikon (Si) murni menjadi silikon yang tercangkok dengan phosphor (P) dengan kadar tertentu, sehingga berperan sebagai bahan semikonduktor yang sangat baik. Fasilitas doping dengan transmutasi neutron (neutron doping facility) pada suatu reaktor nuklir dapat digunakan untuk melakukan irradiasi neutron pada sampel semikonduktor Si yang umumnya terdapat di alam dengan nomor atom 30. Karena proses irradiasi ini maka sebagian sangat kecil inti atom 30Si akan menyerap neutron dan berubah menjadi inti atom radioaktif 31Si, selanjutnya 31Si meluruh menjadi 31P. Dengan teknik irradiasi neutron ini dapat diperoleh bahan semikonduktor Si yang tercangkok P melalui reaksi inti sebagai berikut :
 30Si + 1n Æ [31Si]* —> 31P + b- 
             Dalam abad moderen saat ini, semikonduktor merupakan komponen yang sangat penting dan merupakan bagian utama dari hampir semua rangkaian elektronik. Semikonduktor Si dengan dopan P ini banyak digunakan untuk pembuatan transistor, thyristor tegangan tinggi maupun CCD untuk kamera video. Komputer elektronik generasi baru dikembangkan dengan menggunakan mikroprosesor yang makin renik sehingga secara fisik tampil dengan ukuran yang lebih kecil, namun dengan kecepatan kerja yang jauh lebih tinggi. Semakin reniknya komponen elektronik juga menuntut semakin murninya bahan semikonduktor yang digunakannya. Teknologi irradiasi neutron ternyata mampu memenuhi tuntutan tersebut, bahkan merupakan metode terbaik yang ada saat ini untuk memproduksi bahan semikonduktor dengan tingkat kemurnian sangat tinggi.
             Perkembangan teknologi telah mengantarkan elektronika beralih dari orde mikro ke nano, yang berarti komponen elektronika kelak dapat dibuat dalam ukuran seribu kali lebih kecil dibandingkan generasi mikroelektronika sebelumnya. Proses pembuatan bahan semikonduktor dengan teknik irradiasi neutron dapat dilakukan dengan hasil yang sangat baik, sehingga mendukung ke arah terealisasinya teknologi nano elektronika di masa mendatang. Kadar dopan P dapat diatur dengan teknik pengaturan waktu irradiasi yang tepat. Komponen elektronik seperti transistor biasanya sangat peka terhadap pengotoran, misal pengotoran Si pada saat pabrikasi. Dengan teknik irradiasi neutron, kehadiran pengotor-pengotor lainnya yang tidak dikehendaki dalam produksi komponen berbahan semikonduktor dapat dihindari sejak sebelum proses irradiasi.

Korosi Pada Peralatan Elektronik

             Korosi atau secara awam lebih dikenal dengan istilah pengkaratan merupakan fenomena kimia pada bahan-bahan logam di berbagai macam kondisi lingkungan. Penyelidikan tentang sistim elektrokimia telah banyak membantu menjelaskan mengenai korosi ini, yaitu reaksi kimia antara logam dengan zat-zat yang ada di sekitarnya atau dengan partikel-partikel lain yang ada di dalam matrik logam itu sendiri. Jadi dilihat dari sudut pandang kimia, korosi pada dasarnya merupakan reaksi logam menjadi ion pada permukaan logam yang kontak langsung dengan lingkungan berair dan oksigen. 
            Pada umumnya suatu peralatan elektronik mengandung komponen logam yang mempunyai waktu hidup atau masa pakai tertentu. Korosi pada komponen-komponen tersebut dapat menimbulkan kerugian ekonomi akibat berkurangnya masa produktif peralatan elektronik. Korosi bahkan dapat menyebabkan terjadinya gangguan berupa terjadinya hubungan pendek (konsluiting) yang dapat mengarah kepada terjadinya kecelakaan. Masalah korosi peralatan elektronik merupakan salah satu sumber yang dapat memicu kegagaan operasional serta keselamatan kerja pada suatu industri. Oleh sebab itu, masalah ini sudah selayaknya mendapat perhatian yang serius dari berbagai kalangan.
             Dalam kehidupan sehari-hari, korosi dapat kita jumpai terjadi pada berbagai jenis logam. Bangunan-bangunan maupun peralatan elektronik yang memakai komponen logam seperti seng, tembaga, besi-baja dan sebagainya semuanya dapat terserang oleh korosi ini. Seng untuk atap dapat bocor karena termakan korosi. Demikian juga besi untuk pagar tidak dapat terbebas dari masalah korosi. Jembatan dari baja maupun badan mobil dapat menjadi rapuh karena peristiwa alamiah yang disebut korosi. Selain pada perkakas logam ukuran besar, korosi ternyata juga mampu menyerang logam pada komponen-komponen renik peralatan elektronik, mulai dari jam digital hingga komputer, serta peralatan-peralatan canggih lainnya yang digunakan dalam berbagai aktivitas umat manusia, baik dalam kegiatan industri maupun di dalam rumah tangga. 
             Korosi merupakan masalah teknis dan ilmiah yang serius. Di negara-negara maju sekalipun, masalah ini secara ilmiah belum tuntas terjawab hingga saat ini. Selain merupakan masalah ilmu permukaan yang merupakan kajian dan perlu ditangani secara fisika, korosi juga menyangkut kinetika reaksi yang menjadi wilayah kajian para ahli kimia. Korosi juga menjadi masalah ekonomi karena menyangkut umur, penyusutan dan efisiensi pemakaian suatu bahan maupun peralatan dalam kegiatan industri. Milyaran Dolas AS telah dibelanjakan setiap tahunnya untuk merawat jembatan, peralatan perkantoran, kendaraan bermotor, mesin-mesin industri serta peralatan elektronik lainnya agar umur konstruksinya dapat bertahan lebih lama. Banyak negara telah berusaha menghitung biaya korosi nasional dengan cara yang berbeda-beda, umumnya jatuh pada nilai yang berkisar antara 1,5 – 5,0 persen dari GNP. Para praktisi saat ini cenderung sepakat untuk menetapkan biaya korosi sekitar 3,5 persen dari GNP. Kerugian yang dapat ditimbulkan oleh korosi tidak hanya biaya langsung seperti pergantian peralatan industri, perawatan jembatan, konstruksi dan sebagainya, tetapi juga biaya tidak langsung seperti terganggunya proses produksi dalam industri serta kelancaran transportasi yang umumnya lebih besar dibandingkan biaya langsung.

Penyebab Korosi

              Faktor yang berpengaruh terhadap korosi dapat dibedakan menjadi dua, yaitu yang berasal dari bahan itu sendiri dan dari lingkungan. Faktor dari bahan meliputi kemurnian bahan, struktur bahan, bentuk kristal, unsur-unsur kelumit yang ada dalam bahan, teknik pencampuran bahan dan sebagainya. Faktor dari lingkungan meliputi tingkat pencemaran udara, suhu, kelembaban, keberadaan zat-zat kimia yang bersifat korosif dan sebagainya. Bahan-bahan korosif (yang dapat menyebabkan korosi) terdiri atas asam, basa serta garam, baik dalam bentuk senyawa an-organik maupun organik. 
              Penguapan dan pelepasan bahan-bahan korosif ke udara dapat mempercepat proses korosi. Udara dalam ruangan yang terlalu asam atau basa dapat memeprcepat proses korosi peralatan elektronik yang ada dalam ruangan tersebut. Flour, hidrogen fluorida beserta persenyawaan-persenyawaannya dikenal sebagai bahan korosif. Dalam industri, bahan ini umumnya dipakai untuk sintesa bahan-bahan organik. Ammoniak (NH3) merupakan bahan kimia yang cukup banyak digunakan dalam kegiatan industri. Pada suhu dan tekanan normal, bahan ini berada dalam bentuk gas dan sangat mudah terlepas ke udara. Ammoniak dalam kegiatan industri umumnya digunakan untuk sintesa bahan organik, sebagai bahan anti beku di dalam alat pendingin, juga sebagai bahan untuk pembuatan pupuk. Bejana-bejana penyimpan ammoniak harus selalu diperiksa untuk mencegah terjadinya kebocoran dan pelepasan bahan ini ke udara. 
             Embun pagi saat ini umumnya mengandung aneka partikel aerosol, debu serta gas-gas asam seperti NOx dan SOx. Dalam batubara terdapat belerang atau sulfur (S) yang apabila dibakar berubah menjadi oksida belerang. Masalah utama berkaitan dengan peningkatan penggunaan batubara adalah dilepaskannya gas-gas polutan seperti oksida nitrogen (NOx) dan oksida belerang (SOx). Walaupun sebagian besar pusat tenaga listrik batubara telah menggunakan alat pembersih endapan (presipitator) untuk membersihkan partikel-partikel kecil dari asap batubara, namun NOx dan SOx yang merupakan senyawa gas dengan bebasnya naik melewati cerobong dan terlepas ke udara bebas. Di dalam udara, kedua gas tersebut dapat berubah menjadi asam nitrat (HNO3) dan asam sulfat (H2SO4). Oleh sebab itu, udara menjadi terlalu asam dan bersifat korosif dengan terlarutnya gas-gas asam tersebut di dalam udara. Udara yang asam ini tentu dapat berinteraksi dengan apa saja, termasuk komponen-komponen renik di dalam peralatan elektronik. Jika hal itu terjadi, maka proses korosi tidak dapat dihindari lagi. 
            Korosi yang menyerang piranti maupun komponen-komponen elektronika dapat mengakibatan kerusakan bahkan kecelakaan. Karena korosi ini maka sifat elektrik komponen-komponen elektronika dalam komputer, televisi, video, kalkulator, jam digital dan sebagainya menjadi rusak. Korosi dapat menyebabkan terbentuknya lapisan non-konduktor pada komponen elektronik. Oleh sebab itu, dalam lingkungan dengan tingkat pencemaran tinggi, aneka barang mulai dari komponen elektronika renik sampai jembatan baja semakin mudah rusak, bahkan hancur karena korosi. Dalam beberapa kasus, hubungan pendek yang terjadi pada peralatan elektronik dapat menyebabkan terjadinya kebakaran yang menimbulkan kerugian bukan hanya dalam bentuk kehilangan atau kerusakan materi, tetapi juga korban nyawa. 

Pengendalian Korosi

             Peristiwa korosi pada logam merupakan fenomena yang tidak dapat dihindari, namun dapat dihambat maupun dikendalikan untuk mengurangi kerugian dan mencegah dampak negatif yang diakibatkannya. Dengan penanganan ini umur produktif peralatan elektronik menjadi panjang sesuai dengan yang direncanakan, bahkan dapat diperpanjang untuk memperoleh nilai ekonomi yang lebih tinggi. Upaya penanganan korosi diharapkan dapat banyak menghemat biaya opersional, sehingga berpengaruh terhadap efisiensi dalam suatu kegiatan industri. 
              Pengendalian korosi pada peralatan elektronik dapat dilakukan melalui pengendalian lingkungan atau ruangan di mana peralatan tersebut ditempatkan. Penanganan masalah korosi berkaitan dengan perawatan dan perbaikan fasilitas produksi serta peralatan penunjang lainnya. Kegiatan ini harus dapat mengidentifikasi, mengantisipasi dan menangani masalah korosi pada alat, mesin dan fasilitas industri secara keseluruhan. Pemantauan korosi perlu dilakukan secara periodik. Upaya menghambat laju korosi harus terintegrasi dengan program perawatan dan perbaikan sehingga diperoleh hasil yang terbaik. Pengendalian laju korosi melalui pengendalian lingkungan umumnya dilakukan dengan menjaga kelembaban udara dan pengendalian keasaman lingkungan. Namun pengendalian lingkungan ini hanya mungkin dilakukan untuk peralatan yang berada dalam suatu ruangan, dan tidak mungkin dilakukan terhadap fasilitas yang berinteraksi langsung dengan lingkungan di luar ruangan. Upaya pengendalian korosi ini harus melibatkan semua fihak yang terlibat dalam pengoperasian alat, mesin, instalasi serta fasilitas lainnya. Masalah korosi dan upaya pengendaliannya perlu diperkenalkan kepada seluruh jajaran direksi dan karyawan yang terlibat langsung dalam kegiatan industri. Ada beberapa usaha yang dapat ditempuh dalam upaya pengendalian korosi peralatan elektronik, antara lain adalah :
  • Menyimpan bahan-bahan korosif sebaik mungkin sehingga terjadinya kebocoran, penguapan serta pelepasan ke lingkungan dapat dihindari. Pengecekan bejana penyimpan bahan kimia korosif yang mudah menguap perlu dilakukan secara periodik, sehingga adanya kebocoran bahan tersebut segera dikenali dan dapat diambil tindakan sedini mungkin untuk menghindari efek yang lebih luas. 
  • Melakukan pemeliharaan rumah tangga perusahaan secara baik termasuk ketertiban dan kebersihan dalam perusahaan.
  • Pengoperasian alat dehumidifier untuk mengurangi kelembaban udara dalam ruangan yang di dalamnya menyimpan peralatan elektronik mahal dan rentan terhadap serangan korosi. Peralatan-peralatan elektronik yang rawan terhadap pengaruh korosi perlu disimpan di ruang tertutup, jauh dari kemungkinan pencemaran udara akibat terlepasnya bahan-bahan korosif ke lingkungan. 
  • Menutup alat sewaktu tidak dipergunakan untuk menghindari masuknya debu-debu ke dalam alat. Perlu diketahui bahwa debu dapat tertempeli polutan korosif yang apabila terbang terbawa udara dapat masuk ke dalam alat dan menempelkan dirinya ke permukaan komponen-komponen elektronik di dalam alat tersebut.
  • Pendidikan tentang faktor-faktor penyebab korosi dan akibatnya perlu juga diberikan kepada karyawan yang bersentuhan langsung dengan pengoperasian alat, agar mereka selalu menjaga dan mau mengikuti instruksi-instruksi yang digariskan dalam kaitannya dengan perawatan peralatan elektronik. 
  • Hal yang tak kalah pentingnya dalam upaya menjaga peralatan dari masalah korosi ini adalah dukungan dan perhatian yang serius dari sistim manajemen. Pengawasan dan perhatian yang serius perlu diberikan oleh para pimpinan terhadap manajemen perawatan peralatan-peralatan elektronik.

VB Script

             VBScript atau lengkapnya Visual Basic Scripting Edition adalah sebuah bahasa skrip yang diinterpretasikan saat dieksekusi yang dikembangkan oleh Microsoft Corporation pada tahun 1996 yang seringnya digunakan dalam penjelajah web Internet Explorer (dapat digunakan mulai versi Internet Explorer 3.0). VBScript merupakan sebuah bahasa skrip turunan dari bahasa pemrograman Visual Basic for Applications (VBA) yang digunakan di dalam Microsoft Office dan beberapa platform pengembangan buatan Microsoft lainnya. VBScript menghilangkan beberapa fungsi dari VBA, seperti halnya fungsi I/O berkas dan akses langsung terhadap sistem operasi untuk menyediakan sebuah platform yang aman untuk mengembangkan aplikasi berbasis web dengan menggunakan platform Active Server Pages (ASP). Internet Explorer merupakan penjelajah web pertama yang menyediakan dukungan terhadap kode skrip yang ditulis dalam bahasa VBScript. VBScript dapat dijalankan di atas Windows 9x/ME, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008 serta beberapa platform UNIX.
              VBScript tidak dapat digunakan untuk membuat program yang berdiri sendiri. Akan tetapi, VBScript harus dimasukkan ke dalam sebuah berkas HTML. Ketika Internet Explorer membuka dokumen berkas HTML tersebut, VBScript dapat melakukan fungsi yang sama seperti JavaScript--skrip tersebut akan dieksekusi. VBScript juga dapat digunakan untuk membuat sebuah alikasi HTML (yang memiliki ekstensi .HTA) yang membutuhakan paling tidak Internet Explorer 5 atau yang lebih baru agar dapat berjalan. HTA tidak seara langsung menggunakan Internet Explorer, tetapi menggunakan sebuah program, yakni MSHTA.EXE, yang menginterpretasikan dan menjalankan kode Skrip. VBScript yang dimasukkan di dalam berkas HTML harus dimasukkan di antara tag
              Berikut ini adalah contohnya (yang akan menampilkan sebuah dialog box berisi Hello World! ketika sebuah tombol diklik oleh pengguna):
 TYPE="BUTTON" VALUE="Tekan di sini" NAME="BtnHello">
              Penjelajah Web lainnya seperti Firefox dan Opera tidak memiliki dukungan terhadap VBScript secara langsung. Hal ini berarti untuk kompatibilitas maksimum dengan browser lainnya, para pengembang web site pun menggunakan JavaScript.
              Selain oleh penjelajah Web, VBScript juga dapat dieksekusi oleh aplikasi Windows Scripting Host (WSH). Umumnya, berkas VBScript yang dijalankan oleh WSH ini adalah berkas teks biasa dengan ekstensi .vbs dan dapat dieksekusi dengan menggunakan command-line maupun dengan desktop Windows. Windows memiliki dua buah program yang dapat menginterpretasikan berkas vbs yakni, cscript.exe dan wscript.exe.

 
Copyright © JOHAN JM All rights reserved.
Design Template By Johan Jm
Powered by Blogger